
International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1149
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Reverse engineering of one-way encryption
function

Nikolay Raychev

Abstract - in this research is described an approach for reverse engineering of a hash function. Despite that the
proposed method may not be the best, it still works and it deserves to be examined. The approach does a bloom filter
containing states that may reach the end by adding a suffix with some length. Then it iterates the prefixes of the extra
length and notes each one that matches the filter. As soon as it reaches ten thousand corresponding prefixes or ends, it
tries to break recursively the difference from the states, reached by comparing prefixes against the end state. If it finds
a way to break the difference, the correct prefix forms a pair with the solution of the difference, in order to form a
complete solution. Otherwise, it continues, until the prefixes run out.

Key words: Quantum computing, diffraction, simulator, operators, gates

——————————  ——————————

1. INTRODUCTION

The hashing is a process of converting a sequence
of symbols into another value that corresponds to
the original one by using one-way functions and it
is practically impossible the original value to be
converted by another algorithm only from the hash
value.

Some of the most important properties of the
hashing algorithms:

• The resulting hash should be as random as
possible i.e. so that any assumptions and
conclusions for the original text can not be made
based on the resulting hash.

• The hashing function should have a high entropy
i.e. the chance for collision (equal hash at two
different initial texts) should be minimum (ideally
zero).

• They must be slow. If the cracker knows which
hashing algorithm is used it can generate a rainbow
table i.e. to make to itself matches of hashes and
their initial values. A slower algorithm would have
slowed down repeatedly the generation of such a
table.

The hash function encodes plain text with variable
length into a hash value with fixed length, the
hashing is often used for signing the data or upon
their authentication. As it is known, the secure
hash function must comply with
several requirements: it must be one-way, to be a
secure protection against birthday and
against meet-in-the-middle attacks. A number of

publications from the last ten years prove
that these widely used hash functions such
as MD5 or SHA-1 are no longer secure. In this
way, new hash functions must be examined, in
order to meet the practical needs of applications for
greater cryptographic security.

The one-way encryption functions can be used for
protection of passwords. The idea is that someone
with access to the hash, can not determine the
corresponding password, but he can use it, to
recognize the password when he receives it. This is
especially useful in cases when hackers have access
to a source code or data. For protection of brute
force attacks are used techniques, by which is
slowed down the generation of the final look of our
password. One of the frequently used is key
stretching or multiple hashing, whose purpose is to
complicate and delay the algorithm for hashing, so
that the hardware of the cracker may not be able to
handle it for a short period of time. The most
simple method for key stretching is the application
of a hash function on the result from it for example
1,000 times. Another approach is to use various
heavier algorithms when possible such that are
using 64 bit operations and are 'more difficult' for
the modern video cards (bcrypt, scrypt, sha-512).
Here, however, should be selected the limit,
because this technique will slow down both the
cracker and our server during registration/login of
normal users i.e. we will solve one problem, but at
the same time will be exposed to another
vulnerability - DDOS attacks.

In this article is described an approach for reverse
engineering of a hash function. Despite that the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1150
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

proposed method may not be the best, it still works
and it deserves to be examined.

2. THE APPROACH

One-way encryption function

To be clearly understandable by the readers the
one-way encryption function is rewritten to C#:

static hashHashTuple<Int32, Int32> Hash(string
text) {
 var
dictCharSet="abcdefghijklmnopqrstuvwxyzABCD
EFGHIJKLMNOPQRSTUVWXYZ0123456789`~!@#
$%^&*()_+-=|[];',.{}:<>? ";
 Int32 a = 0;
 Int32 b = 0;
 foreach (var letter in text) {
 var e = dictCharSet.IndexOf(letter);
 if (e == -1) e = dictCharSet.Length + 1;
 for (var i = 0; i < 17; i++) {
 a = a *-6 + b + 0x74FA - e;
 b = b / 3 + a + 0x81BE - e;
 }
 }
 return HashTuple.Create(a, b);
}

As can be seen, the state of the one-way encryption
function consists of 32-bit signed integers (a, b),
which start from 0. The input is a sequence of
symbols, made up of 93 possibilities. Each symbol
from the input is added into state on a progression
of 17 rotations and when the last symbol has been
added, the result is the final state (a, b).

It should be noted that the addition and
multiplication are not verified (e.g.
Int32.MaxValue+1 = Int32.MinValue,
Int32.MaxValue*2 = -2) and the division is rounded
towards 0 (e.g. -4/3 = -1, 7/3 = 2).

In addition to the one-way encryption function
there is also a translated code that verify whether
the combination of username/password is valid:

static bool CheckHashVerify(string
username, string password) {
 var
CheckExpectedResultPassHash = HashTuple.Creat
e(-0x20741256, -0x4A579222);
 var CheckExpectedResultNameHashes = new[] {
 HashTuple.Create(-0x52BEB283, -0x733C9599),

 HashTuple.Create(0x605D4A4F, 0x7EDDB1E5)
,
 HashTuple.Create(0x3D10F092, 0x60084719)
 };

 var ResultPassHash = Hash(password);
 var ResultNameHash = Hash(username);
 return password.StartsWith("<+")
 &&
ResultPassHash.Equals(CheckExpectedResultPass
Hash)
 &&
CheckExpectedResultNameHashes.Contains(Resul
tNameHash);
}

As can be seen, both the valid user names and the
valid password are protected by hashing. Also, the
first two characters of the password are included in
the code.

Although it may seem meaningless to give away
some of the symbols of the password, in fact it is a
good idea in the given context. The prefix is used as
a filter for the event that triggers the hashing, in
order to avoid the hashing of each message, said by
someone. The filter allows not to be shared secretly
all messages. The corresponding filter should be
known, in order to actuate the trigger for events, as
well as the concrete plain text, in order to load the
exact information in the hash function. Otherwise,
they can not progress orchestratedly in an
ensemble.

The purpose of the task is to find a username and a
password that make the function CheckHashVerify
return true.

Leakage of entropy

The first thing, which can be seen in the above
function, suggesting, that it would be easy to break,
is the leakage of entropy. Irreversible operations
are used, which reduce the number of the states in
which the system could be.

For facility's sake here is given a spread out version
of the internal loop, with multiplication by 6,
factored down and division by 3, followed by
inverse multiplication.

a *= 2;
a *= -3;
a += b;
a += 0x74FA;

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1151
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

a -= e;
b -= b % 3; // rounding to a multiple of 3, towards
0
b *= -1431655765; // reciprocal of 3 (mod 2^32)
b += a;
b += 0x81BE;
b -= e;

When working in modular arithmetic, some
multiplications are reversible (i.e. there is no
leakage of entropy), but others are not.

Multiplying a 32-bit integer by 3 does not increase
the amount of entropy because it is reversible. Each
input state corresponds to exactly one output state.
The operation may be performed also backwards
by multiplying with the reciprocal of 3. The
reciprocal of 3 is 3−1 = −1431655765 (𝑚𝑜𝑑 232)
because the multiplication of both gives a result
equal to one: 3 ∙ 3−1 = 3 ∙ −1431655765 =
 −4294967295 = −232 + 1 ≡ 1(𝑚𝑜𝑑 232)

Multiplying by 2 is NOT reversible. It does not
increase the amount of entropy. This is like that
because
(𝑥 + 231) ∙ 2 = 𝑥 ∙ 2 + 232 ≡ 𝑥 ∙ 2(𝑚𝑜𝑑 232), in other
words both inputs x or 𝑥 + 231 are collided into the
single output of 2 . х. In the worst case thus is
limited the possible number of output states to be
half the number of the input states, by destroying 1
bit of entropy. Many inputs correspond to one
output, so the operation is not reversible and there
is a leakage of entropy.

The other irreversible operation is the rounding to
the nearest multiple of 3 towards 0. In the worst
case this destroys about 1.5 bits of entropy,
reducing the number of possible states to about
one-third.

These leaks occur to each separate rotation and it is
possible their cumulative effect to be very bad. The
state is similar to the problems of the type "mixing
tank" that are solved, when are studied differential
equations, except that the input mixture continues
to change the color. If the tank is leaking then the
contribution of the early colors to the average color
decreases exponentially, rather than linearly, as
more colors are added.

These leakages suggests that the earlier values are
in danger of "dilution". Each rotation destroys
several bits and replaces them with mixtures of the
remaining entropy. Later values do not get
destroyed and mixed a lot, but the early ones do.

Maybe, in order to find an original, should be
looked only the last few characters instead of all.
For finding a collision could be added the same
long suffix to each two starting strings.

It appears that these leaks are not catastrophic, but
they really should not have existed in the first
place. The fixing of the leak, caused by multiplying
by 6, is as easy as changing 6 to 7. The fixing of the
leak, caused by rounding to a multiple of 3, is just
as easy: the rounding is simply removed. In fact the
last idea is terrible.

Almost linear

All operations in the hash function, with the
exception of rounding to a multiple of three, are
linear. They are allocated on addition.

If the operation rounding is removed, the
participations of each input can be separated and
reduced to a separate multiplicative constant that
depends only on the position compared to the end
of the string. Each input value is multiplied by the
constant, corresponding to that position, the
products will be summed and this is the result of
the hashing. Finding an input that hashes a given
value, would have solved the problem with the
sum of the subsets.

An interesting fact: If the leak of entropy due to the
rounding is fixed (by eliminating it), but the leak
from the multiplication by 6 is not fixed, the things
will become even worse. The constants,
corresponding to the positions, will obtain
coefficients of two. In the end, only the last four
characters will have non-zero corresponding
constants and the collisions will be slightly easier to
find.

It is interesting that the operation, rounding b to be
a multiple of three, affects the state to a very small
extent. It offsets it at most by 2, but this is the only
reason due to which the reversal of the one-way
encryption function is difficult. Of course, at
suitably designed hash function, the nonlinearities
are reversible (e.g. can be applied XOR a into b
instead of adding a into b, probably reversing half
of the b bits).

The fact that the nonlinearity is so small suggests
that there can be applied an integer programming
to the problem. Probably the solutions with integer
constants are much faster when there is this type of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1152
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

regularity. In fact the idea does not appear to be a
good one.

The solutions with integer constants are not
designed for modular arithmetic. Each used
solution fails to reverse even three of the seventeen
rotations, necessary to process a separate symbol,
because are required values that exceed the valid
range of the solvers. The confusing in the case is
that appears only the message "no solution". The
only solver that gives an indication that the error is
due to going out of the range, is IBM CPLEX.

A new approach

After several failed attempts it is logical to try also
the most obvious things, namely to seek the answer
with brute force.

First, lets just list all inputs. This is done very
slowly after receiving five characters, since there
are 93 possibilities for each symbol and 935 =
6956883693 ≈ 1010. At so many possibilities for
checking, each additional operation needed to
check a separate possibility, adds at least a second
to the time of operation (and the hashing includes
hundreds of operations). At six characters the time
is already one hundred seconds per operation, i.e.
it may be necessary to wait for days.

Second, let's try something in the middle.

Since the integrity of the state of the one-way
encryption function is used as an output, it is
possible to run it reversibly backwards (however,
this is slower). You simply have to make inversions
of each operation. In this way can be examined
both forward and backwards, while finding
common middle states.

To say that this gives an increase of the
performance is simply an understatement. Instead
of using almost a trillion hash operations for all
possible six character strings, will be necessary
only million hash operations and million reverse
hash operations. These million hash operations are
used for testing of all possible three character
prefixes, building a dictionary that takes a reached
state and gives the prefix that has reached it. The
reversed hash functions test all possible three
character suffixes, by telling which intermediate
states can be reached by examining backwards
from the final state. If there is a way from the start
point to the end point then each state, reached by

going backwards, will be in the dictionary and this
will bring an end to it.

Third, let's use a bloom filter instead of a dictionary
for storing the middle states. Instead of
immediately obtaining a solution when finding a
match in the middle, each match is a possible
solution, which can be checked later by re-
examining the possible prefixes.

Why it is worth sacrificing the immediate result, in
order to go from three "cached" rotations to four
cached rotations? Because each cached rotation is
effectively a 100-fold speedup.

Fourth, let's trace the integer restrictions. If they are
many restrictions known, which the intermediate
states have to satisfy, then they can be checked
constantly and to be rejected states that do not fit.
When it is measured by how much this reduces the
space for searching, it turns out that it is 50% per
reverse rotation.

At this stage is detected the first result. One of the
user names has only seven characters: "Procyon".
And still the problem with the time remains,
because the verification of all restrictions lasts for
very long.

In fact 50% reduction of the space for searching
from the restrictions is wrong. In fact the
restrictions simply catch what would have been
caught at the next inverse multiplication or reverse
division by 3. In other words, the limitations reach
0% reduction. Their elimination speeds up the
things quite a bit, by allowing the searching of all 9
character strings.

Finally, let's switch the direction of caching. The
going backwards is much more expensive than the
going forward, and there is a restriction of the
memory for caching of less rotations. The caching
of results of going forward instead of going
backwards reduces the amount of reverse hash
operations and makes possible the searching of all
strings up to ten characters, as long as you wait for
several days.

Collision

After all, there is a weakness found that is used for
beating the hash function: The size of its output.

The size at the output is 64 bits, allowing a little
more than 1019 possibilities. All strings up to ten

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1153
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

characters (at 93 possibilities per symbol) can be
searched through, which makes 9310 possibilities.
This is around five times 1019.

At this time it is not important how long is the
actual password. By pure luck of the brute force
can be found strings, which are hashed in the same
way.

Code

The following code is used for breaking the
cryptographic hash function:

/// Returns a given initial state and a sequence of
values with the given length that reach the given
end state.
/// If such a sequence does not exist, it returns
null.
public static HashTuple<HashState, int[]> HashBre
ak(HashState end,
 int fictiveAssumedLength,
 IEnumerable<HashState>
initiallyStates) {
 // Generates a Bloom filter backwards from the
end
 var
numReversiveExpandBackward = (fictiveAssume
dLength -
 1).Min((fictiveAssumedLength * 2) / 3).Max(0).Mi
n(4);
 var
filter = HashStateBloomFilter.GenReverseCache(en
d, numReversiveExpandBackward ,
pFalsePositive: 0.0001);

 // Examine forward from the initial states to the
filter, rejects the states that do not match
 var filteredPossiblePartialSolutions =
 from start in initiallyStates
 from middleStateAndData in
start.ExploreWholeTraceVolatile(fictiveAssumedLe
ngth - numReversiveExpandBackward)
 where
filter.ProbablyContain(middleStateAndData .Item1
)
 select new { start, data =
middleStateAndData .Item2.ToArray(), end =
middleStateAndData .Item1 };

 // base case: Insufficient length to meet in the
middle. The parts are in fact complete solutions.
 if (numReversiveExpandBackward == 0) {
 return filteredPossiblePartialSolutions

 .Select(e => HashTuple.Create(e.start,
e.data))
 .GetFirstOrDefault();
 }

 // it is not desirable to wait for all possible
partial solutions before checking. That would take
tons of memory.
 // It is not desirable to be made a verification
after each possible partial solution, because that is
expensive.
 // so the possible solutions are separated and
verified, when there is enough such, to be worth
the time.
 var parts =
filteredPossiblePartialSolutions .PartVolatile(10000)
;

 // Completion of all partial solutions
 var solutions =
 from part in parts
 let partialSolutionMap =
part.ToDictionary(e => e.end, e => e)
 // Recursive solving of the difference
 let secondHalf = HashBreak(end,
numReversiveExpandBackward ,
partialSolutionMap.Keys, true)
 where secondHalf != null
 // Everything, which is reaching up to here, is
a solution. To be combined with the first half and
to be returned.
 let partialSolution =
partialSolutionMap[secondHalf.Item1]
 let start = partialSolution.start
 let data =
partialSolution.data.Concat(secondHalf.Item2).ToA
rray()
 select HashTuple.Create(start, data);

 // Running the queries
 return solutions.GetFirstOrDefault();
}

The above code does a bloom filter containing
states that may reach the end by adding a suffix
with some length (up to 4). Then it iterates the
prefixes of the extra length and notes each one that
matches the filter. As soon as it reaches ten
thousand corresponding prefixes or ends, it tries to
break recursively the difference from the states,
reached by comparing prefixes against the end
state. If it finds a way to break the difference, the
correct prefix forms a pair with the solution of the
difference, in order to form a complete solution.
Otherwise, it continues, until the prefixes run out.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1154
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

It should be noted that the code is not optimized
much. More precisely, Linq queries are used
instead of the equivalent imperative code. Neither
the compiler of C#, nor the .Net jit optimize them
well and so the code pays for tones of calls of the
virtual function, even when it is not necessary. On
the other hand, the equivalent imperative code is
difficult to use, because in the end, everything is
mixed up together in one big mess.

Solutions

After completing the computations the code
returns a password, which corresponds to the hash
of the password. The password is " <
+mt1BmgbNht" (or rather <+ mt1BmgbNht is a
string, that hashes to the same thing as the real
password). It is seen that the password has 12
characters, but this is due to the fact that the first
two characters of the password are omitted in the
hash code, i.e. only 10 characters are sought.

3. CONCLUSION

Useful things when writing hash functions:

 There shall be no leakage of entropy. All
operations on rounding should be reversible.

 The entire state of the hash must not be used as
a result. The going back from the result can be
difficult.

 Use non-linear combinations of operations and
apply them often. The results at each input
must be difficult for separation.

A result with many bits must be obtained. The
collisions must be difficult to detec

REFFERENCES

[1] E. Biham, A. Shamir. Differential Cryptanalysis
of the Data Encryption Standard, Springer-Verlag,
1993.
[2] E. Biham, R. Chen, Near collision for SHA-0,
Advances in Cryptology, Crypto’04, 2004, LNCS
3152, pp. 290-305.
[3] B. den. Boer, A. Bosselaers. Collisions for the
compression function of MD5, Advances in
Cryptology, Eurocrypt’93 Proceedings, Springer-
Verlag, 1994.
[4] F. Chabaud, A. Joux. Differential collisions in
SHA-0, Advances in Cryptology, Crypto’98
Proceedings, Springer-Verlag, 1998.

[5] S. Cotini, R.L. Rivest, M.J.B. Robshaw, Y. Lisa
Yin. Security of the RC6 TM Block Cipher,
http://www.rsasecurity.com/rsalabs/rc6/.
[6] I. B. Damgard. A design principle for hash
functions, Advances in Cryptology, Crypto’89
Proceedings, Springer-Verlag, 1990.
[7] Nikolay Raychev. Quantum circuit for spatial
optimization. International Journal of Scientific and
Engineering Research 06/2015; 6(6):1365-1368.
DOI:10.14299/ijser.2015.06.004, 2015.
[8] Nikolay Raychev. Encoding and decoding of
additional logic in the phase space of all operators.
International Journal of Scientific and Engineering
Research 07/2015; 6(7): 1356-1366.
DOI:10.14299/ijser.2015.07.003, 2015.
[9] Nikolay Raychev. Measure of entanglement by
Singular Value decomposition. International
Journal of Scientific and Engineering Research
07/2015; 6(7): 1350-1355.
DOI:10.14299/ijser.2015.07.004, 2015.
[10] Nikolay Raychev. Quantum algorithm for
spectral diffraction of probability distributions.
International Journal of Scientific and Engineering
Research 08/2015; 6(7): 1346‐‐1349.
DOI:10.14299/ijser.2015.07.005, 2015.
[11] Nikolay Raychev. Reply to "The classical-
quantum boundary for correlations: Discord and
related measures". Abstract and Applied Analysis
11/2014; 94(4): 1455-1465, 2015.
[12] Nikolay Raychev. Reply to "Flexible flow shop
scheduling: optimum, heuristics and artificial
intelligence solutions". Expert Systems; 25(12): 98-
105, 2015.
[13] Nikolay Raychev. Classical cryptography in
quantum context. Proceedings of the IEEE 10/2012,
2015.
[14] FIPS 180-1. Secure hash standard, NIST, US
Department of Commerce, Washington D.C.,
Springer-Verlag, 1996.
[15] RIPE. Integrity Primitives for Secure
Information Systems. Final Report of RACE
Integrity Primitives Evaluation (RIPE-RACE 1040),
LNCS 1007, Springer-Verlag,
1995.
[16] R.C. Merkle. One way hash function and DES,
Advances in Cryptology, Crypto’89 Proceedings,
Springer-Verlag, 1990.
[17] R.L. Rivest. The MD4 message digest
algorithm, Advances in Cryptology, Crypto’90,
Springer-Verlag, 1991, 303-311.
[18] R.L. Rivest. The MD5 message-digest
algorithm, Request for Comments (RFC 1320),
Internet Activities Board, Internet Privacy Task
Force, 1992.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1155
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

IJSER

http://www.ijser.org/

